新型FoundationModels及应用
训练和推理加速
可解释性等理论研究
Virtual Agent
Physical Agent
为昆仑在通用人工智能(AGI)的中长期发展中提供基础研究维度上的支持,增强自主创新,加速实现AGI的步伐,同时专注于AGI相关课题的科技创新,提升企业的理论与技术竞争力。
跨越“奇点”、探索未知世界、创造美好未来,成为一家面向未来
世界的卓越科学研究机构!
新加坡工程院院士、AAAI、ACM、IEEE 及 IAPR Fellow
新型FoundationModels及应用
训练和推理加速
可解释性等理论研究
Virtual Agent
Physical Agent
Reinforcement Learning from Diverse Human Preferences
Wanqi Xue, Bo An, Shuicheng Yan, Zhongwen Xu
IJCAI 2024 Conference
August 2024
Keywords: Reinforcement Learning, Human Preferences, Human Feedback, Rewards
Exploring Diffusion Time-steps for Unsupervised Representation Learning
Zhongqi Yue, Jiankun Wang, Qianru Sun, Lei Ji, Eric I-Chao Chang, Hanwang Zhang
ICLR 2024 Conference
May 2024
Keywords: unsupervised representation learning, diffusion model, representation disentanglement, counterfactual generation
Synapse: Trajectory-as-Exemplar Prompting with Memory for Computer Control
Longtao Zheng, Rundong Wang, Xinrun Wang, Bo An
ICLR 2024 Conference
May 2024
Keywords: AI Agents, Large Language Models, Prompting
True Knowledge Comes from Practice: Aligning Large Language Models with Embodied Environments via Reinforcement Learning
Weihao Tan, Wentao Zhang, Shanqi Liu, Longtao Zheng, Xinrun Wang, Bo An
ICLR 2024 Conference
May 2024
Keywords: Reinforcement Learning, Large Language Models, Parameter-Efficient Fine-Tuning
Enhancing Video-Language Representations with Structural Spatio-Temporal Alignment
Hao Fei; Shengqiong Wu; Meishan Zhang; Min Zhang; Tat-Seng Chua; Shuicheng Yan
IEEE Transactions on Pattern Analysis and Machine Intelligence
April 2024
Keywords: Videos, Semantics, Transformers
天工
FOR THE BEST AND THE BRIGHTEST